Month: December 2016

Enable Source-Specific Multicast in Iperf

I was preparing lab environment to test configuration of Source-Specific Multicast on Juniper SRX Equipment and needed a tool to generate and measure Source-Specific Multicast streams.

I was aware that Iperf is a good enough tool to generate and measure multicast and unicast traffic but support for SSM was missing from current version. Fortunately there are always some developers which are interested in networking so one of them developed a special Iperf version 2.0.5 with SSM support.

The idea here is to show how to make this version of Iperf work on your Cent OS or similar Linux machine.

Here are few steps that should work from your Cent OS 6.8 Linux Server and hopefully from other similar distributions to:

| Continue Reading.. |

Source-Specific Multicast Configuration

In SSM, Source-Specific Multicast, things are done differently from standard multicast forwarding. SSM is specifying a group of hosts that are receiving same multicast stream using group IP address and additionally using stream unicast source IP.

In this article it is shown how to configure Source Specific Multicast on Cisco and Juniper equipment.

In standard multicast, forwarding is done using group IP address which is an IP from multicast dedicated range 224.0.0.0/4 (224.0.0.0 – 239.255.255.255) or FF00::/8 in IPv6. Each multicast group IP address is a single address which specifies all hosts receiving a specific stream, streamed towards that group IP address from multicast source. In standard multicast everybody can start to stream with some IP multicast group IP, becoming in that way, the multicast source.

| Continue Reading.. |

QKD – How Quantum Cryptography Key Distribution Works

QKD – Quantum key distribution is the magic part of quantum cryptography. Every other part of this new cryptography mechanism remains the same as in standard cryptography techniques currently used.

By using quantum particles which behave under rules of quantum mechanics, keys can be generated and distributed to receiver side in completely safe way. Quantum mechanics principle, which describes the base rule protecting the exchange of keys, is Heisenberg’s Uncertainty Principle.

Heisenberg’s Uncertainty Principle states that it is impossible to measure both speed and current position of quantum particles at the same time. It furthermore states that the state of observed particle will change if and when measured. This fairly negative axiom which says that measurement couldn’t be done without perturbing the system is used in positive way by quantum key distribution.

| Continue Reading.. |